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Calibration models for quickly and reliably predicting moisture content and total nitrogen, both “as is”
and “dry matter” on malt, as well as moisture content and total lipids, both “as is” and “dry matter”,
on maize by means of near-infrared (NIR) spectroscopy were developed. The FT-NIR spectra recorded
on the finely ground cereals were correlated to the analytical data by means of the multivariate PLS
algorithm. In particular, these models were developed on the raw materials, which are used by the
main Italian brewing industries. Validation was carried out both by means of cross-validation and
test set validation. Regression coefficients (R2) were higher than 97 for both malt and maize moisture
content and higher than 85 and 88 for malt total nitrogen and maize total lipids, respectively. The
RMSE values (both RMSECV and RMSEP) were lower than 0.1% m/m for both malt and maize
moisture contents, whereas they ranged from 0.024 to 0.042% m/m for malt total nitrogen and from
0.042 to 0.055% m/m for maize total lipids. Repeatability was tested by taking into account more
than one sample for each calibration and compared, when possible, to those of the standard methods.
Repeatability (r95) ranged from 0.060 to 0.158% m/m and from 0.020 to 0.055% m/m for malt moisture
and total nitrogen contents, respectively, and from 0.094 to 0.160% m/m and from 0.076 to 0.208%
m/m for maize moisture and total lipids contents, respectively.
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INTRODUCTION

Near-infrared spectroscopy is a nondestructive and rapid
technique applied increasingly for food quality evaluation in
recent years; it is a type of vibrational spectroscopy that employs
photon energy (hν) in the energy range from 2.65 × 10-19 to
7.96 × 10-20 J, which corresponds to the wavelength range of
750-2500 nm (wavenumbers 13300-4000 cm-1) (1). Absorp-
tion of infrared light by a molecule is due to interaction of the
electromagnetic radiation with the vibration of bonds between
atoms (1). In the infrared spectra, light is absorbed if the
frequency of the light is the same as the fundamental frequency
of vibration of the molecular bond (2). Molecular vibrations
are slightly anharmonic, however, and consequently higher
frequency light in the near-infrared can also be absorbed if its
frequency is the same as that of one of the harmonics of the
fundamental. The absorption bands in the near-infrared spectra
are thus referred to as either overtone bands, with frequencies
of about 2, 3, or more times the fundamental, or combination
bands, with frequencies that are the sum of the frequencies of

two fundamentals. For combination bands permitted by anhar-
monicity, it would be necessary that only one of the combining
vibrations be active (causing dipole change). This feature may
cause some vibrations, which cannot be observed in the mid-
infrared, to be displayed by a near-infrared spectrum. For
overtone or combination bands to occur in the near-infrared,
the frequencies of the fundamental vibrations must be high
enough; otherwise, these bands occur at wavelengths in the mid-
infrared. This is only true for bonds involving hydrogen, for
example, C-H, O-H, N-H, and S-H. The carbonyl (CdO)
vibration is an exception, as it is strong enough in the mid-
infrared that the second overtone can be seen in the near-infrared
(3). A near-infrared spectrum typically contains a large number
of peaks, broad and overlapped, but now we have computers
powerful enough to analyze these complex spectra and extract
quantitative and qualitative information about the samples (3).
These spectra can be collected in reflectance (near-infrared
spectroscopy in reflectance, or NIR) or in transmission (near
infrared spectroscopy in transmission, or NIT).

When the light is reflected by opaque samples, the diffuse
reflectance is the preferred approach.

The analytical methods resulting from the use of the NIR
spectroscopic region show significant characteristics: they are
fast (e1 min per sample), nondestructive, and noninvasive, are
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characterized by high penetration of the probing radiation beam,
are suitable for in-line use, and have nearly universal application
(any molecule containing C-H, NH, S-H, or O-H bonds),
with minimal sample preparation demands and without the use
of hazardous chemicals (1).

Most of the quantitative models developed by using NIR
spectral information are based on the use of samples for which
analyte concentration or property has been determined by a
standard, well-accepted analytical procedure designated the
reference method. The number of samples employed for
calibration has been considered to be of great importance.
Recommendations for multicomponent natural samples are in
the range of 50-100 samples, depending on the complexity and
variability of the matrix accompanying actual samples (1).

Most of the quantitative applications are targeted to determine
major constituents in the sample. In general, the detection limit
is about 0.1% (m/m), although, for some specific applications
and under favorable characteristics of the sample matrix and
analyte, NIR can reach lower values (1).

However, NIR relies on a multivariate model to quantify a
property or a concentration in complex samples, as demonstrated
by the diversity of applications in food and agriculture (4).

NIR is indeed used in plant breeding and in the cereal industry
for the prediction of a wide range of specific chemical (e.g.,
water, protein, starch) and physical (e.g., grain hardness)
parameters from computerized calibrations using classical
statistical and chemometric software (5-7).

This analytical method is so useful to the brewery industry
as a quality assurance and research tool because it can measure
organic substances very quickly (5-10 s), without the destruc-
tion of a sample or use of hazardous chemicals. It can be used
to evaluate raw materials, yeasts, enzymes, nutritional supple-
ments, and production parameters, and it can assist production
by monitoring and maintaining control of processes (3). One
of the main raw materials in the brewery industry is barley malt.
However, in many countries the use of amylaceous sources other
than barley malt is permitted, because of economic and
quantitative reasons. In Italy, the main adjunct used is maize,

which can be added as flour in mashing up to 40%, according
to Italian legislation (8).

Various researchers developed calibration curves using NIR
spectroscopy to measure multiple parameters related to malt
quality (9, 10), for example: moisture (11), nitrogen (11), amino
acids (12), malt extract (13), starch and total �-glucans (14-16),
and fiber (17). All of these studies are carried out on milled
and homogenized samples of barley or malt. More recently,
researchers have started to develop calibration models for the
prediction of malt modification and other grain constituents
using NIR on a single grain basis (18, 19), but obtaining low
correlation coefficients.

One of the most important determinations in malt evaluation
is moisture content. This parameter ranges from 3 to 5%. Dry
malt is a hygroscopic product; it is necessary to avoid moisture
absorption, because the presence of water causes the reactivation
of hydrolytic enzymes, resulting in undesired transformations.
Moreover, the moisture content of malt is a relevant parameter
for brewers, who are interested in the dry matter of the raw
material (20).

An important determinant of barley quality is the level of
protein. For malting barley, a balance between carbohydrates
(starch) and protein is important, because an excess of protein
decreases the amount of available carbohydrates, giving a
negative downstream effect on the brewing process. The protein
content of malt must not be high, because it can cause haze
and problems of chemical and physical instability in the beer.
For these reasons, the total nitrogen must be <1.76% (20).
Therefore, it is important to have robust techniques to measure
protein content in the selection of barley. Near-infrared reflec-
tance spectroscopy (NIRS) has been used routinely to predict
barley protein content for many years for grain reception and
more recently in barley breeding programs.

Recently, strong correlations for grain protein and NIR
wavelengths were found at 1116, 1268, 2040, 2068, 2188, and
2300 nm used for extracted hordein. Multiple linear regression
equations provided improved predicting power for barley and
malt protein with standard errors of prediction of 0.15 and
0.17%, respectively (21).

Another important parameter of malt quality that is possible
to determine by NIR is hardness; in barley, malting varieties
generally were classified as soft grain, whereas nonmalting or
feed varieties were classified as hard. Hardness has also been
associated with the level of modification of malt, which would
imply that grain components within the endosperm (such as
starch granules, starch protein matrix, and cell wall material)
directly affect modification (22). A particular application of near-
infrared spectroscopy in transmission (NIT) is the study of the
physiological and physical-chemical basis of barley germina-
tion; NIT calibrations can be used to predict vigor in malting
grade barley (23, 24).

In the evaluation of maize, NIRS can be used to predict dry
matter (dm), acid detergent fiber (ADFom), and crude protein
(CP) in wet whole maize (WWM) silage samples (25).

The use of single-kernel NIRS permits a rapid selection of
individual seeds with desired traits. The most accurate models
were for predictions of the major components of the kernel
including protein, starch, and calorie content as well as seed
weight. These data suggest that single-kernel NIR spectra are
reporting an absolute amount of each component in the kernel
(26).

Furthermore, one of the most recent applications of NIRS
allows the identification of relevant targets such as the myc-

Table 1. Optimal Parameters for NIR Calibrations on Malt (Moisture
Content and Total Nitrogen) and Maize (Moisture Content and Total Lipids)

no. matrix parameter regions, cm-1 preprocessing

1 malt moisture content 9970.4-4246.6 constant offset elimination
2 malt total nitrogen, as is 9970.4-4246.6 first derivative + vector

normalization (SNV)
3 malt total nitrogen, dry

matter
7509.1-4246.6 straight line subtraction

4 maize moisture content 7501.9-6098,
5453.8-4246.6

vector normalization (SNV)

5 maize total lipids, as is 7501.9-4246.6 first derivative
6 maize total lipids, dry

matter
7501.9-4246.6 first derivative + vector

normalization (SNV)

Table 2. Results of NIR Calibrations for Malt (Moisture Content and Total
Nitrogen) and Maize (Moisture Content and Total Lipids) by Means of
Cross-Validation (Leave-One-Out)

no. matrix parameter R2 RMSECV,
% m/m

bias,
% m/m

rank

1 malt moisture content 97.83 0.097 0.0004 12
2 malt total nitrogen, as is 92.86 0.026 -0.0001 9
3 malt total nitrogen, dry matter 94.08 0.024 -0.0003 15
4 maize moisture content 98.29 0.074 0.0036 12
5 maize total lipids, as is 92.96 0.042 -0.00107 9
6 maize total lipids, dry matter 90.32 0.054 -0.00089 8
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otoxigenic fungi and their toxic metabolites produced in
naturally and artificially contaminated products (27).

Moisture and lipid contents in maize are important parameters
for brewers. In particular, the latter has to be kept under control,
as a high lipid concentration in the beer can cause problems
with the chemical and physical stability, as well as with the
keeping of foam. Various researchers have developed calibration
curves, using NIRS to measure these parameters, but these
models were built using different types of cereals (28).

The purpose of this study is the optimization of NIR
calibration curves to evaluate the quality of brewing raw
materials used by the main breweries in Italy, to develop a
specific analytical method for breweries and cereal industries.
The calibrations were based on the spectra of the finely ground
samples: the milling of the cereals is indeed a routine and non-
time-consuming operation in all breweries that carry out raw
material characterization, and only a small amount of flour, <50
g, is needed to carry out the NIR measurements by means of

Figure 1. Predicted versus true values for malt calibrations, carried out by means of cross-validation (leave-one-out): (a) moisture content; (b) total
nitrogen, as is; (c) total nitrogen, dry matter.

Figure 2. Predicted versus true values for maize calibrations, carried out by means of cross-validation (leave-one-out): (a) moisture content; (b) total
lipids, as is; (c) total lipids, dry matter.
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the integrating sphere sampler. Moreover, the homogeneity of
the samples is higher when considering ground cereals rather
than whole grains; the corresponding models are hence expected
to be more precise. The calibrations were validated, and
repeatability, calculated by taking into account more than one
sample for each model, was compared with those of the standard
analytical methods. Such calibrations were built with the aim
of finding a correlation between the NIR spectral data and the
moisture content and total nitrogen (“as is” and “dry matter”)
for malt and moisture and lipids (“as is” and “dry matter”) for
maize.

MATERIALS AND METHODS

Apparatus included a sample divider (VLB, Berlin, Germany);
DLFU type disk mill (Bhüler, Uzwil, Switzerland), set to a gap of 0.2
mm; moisture aluminum dishes (VLB); FD115 electrically heated
ventilate oven, capable of holding temperature within (0.5 °C (Binder,
Tuttlingen, Germany); AB204-S balance, accuracy (0.0005 g (Mettler-
Toledo, Greifensee, Switzerland); Elix 3 System (Millipore, Billerica,
MA); Foss Tecator Digestor (Foss, Hillerød, Denmark); 2200 Kjeltec
Auto Distillation Unit (Foss); Laborota 4600 ECO (Heidolph, Schwa-
bach, Germany); Vector 22/N FT-NIR spectrometer system, equipped
with tungsten source, Rocksolid interferometer, fiber optic module
equipped with Ge Diode detector, and an integrating sphere module
equipped with PsS detector for spectra acquisition in diffuse reflectance
(Bruker Optics, Milan, Italy).

Reagents included sulfuric acid (95-97%; Fluka, Milan, Italy);
sodium hydroxide >99% (Riedel-de Haën, Milan, Italy); Kjeldhal
tablets (Merk, Whitehouse Station, NJ); 35% m/m hydrogen peroxide
solution (Riedel-de Haën); 1-octanol >99% (Fluka); boric acid >99%
(J. T. Baker, Phillipsburg, NJ); bromocresol green ACS (Carlo Erba
Reagents, Milan, Italy); Fixanal 0.05 mol of sulfuric acid (Riedel-de
Haën); petroleum ether 45-60 °C (J. T. Baker).

Samples. Malt and maize samples were supplied from industrial
malthouses and mills and are representative of the ones available on
the Italian market. Samples of malt representative of the different types
(i.e., pale, Munich, colored, and caramel) were considered. In particular,
the following data sets were used to set the calibrations: 284 malt
samples (among which were 13 Munich, 8 colored, 2 caramel, and 1
wheat) for malt moisture content; 275 malt samples (among which were
13 Munich, 7 colored, 2 caramel, and 1 wheat) for malt total nitrogen
content, both as is and dry matter; 146 and 95 maize samples for maize
moisture content and total lipids (both as is and dry matter),
respectively.

Sample Preparation and Spectra Acquisition. Maize grits and malt
grain samples (about 1 kg) were homogenized by means of a sample
divider and finely ground by means of a DLFU type disk mill set at a
distance between the disks of 0.2 mm. The flours were used to record
the spectra and to carry out the reference analyses. All spectra were
recorded on a quartz-bottom cup (4 cm inner diameter) placed on the
integrating sphere optics and, to compensate for the lack of homogene-
ity, the sample was spun during the measurement (10 rpm). Absorption
spectra were collected at room temperature, against a gold-coated
background, by means of the software OPUS (version 5.5 or 6.5, Bruker

Optics) in the spectral range of 11500-4000 cm-1 with a resolution
of 8 cm-1 using 64 scans/sample (the same number of scans was also
used for the background).

Data Processing, Calibration Models, and Validation. Various
spectral treatments were employed to avoid baseline shifts arising from
scattering: constant offset elimination, first derivate (Savitzky-Golay
algorithm with 25 smoothing points), standard normal variate (SNV),
and straight line subtraction. Calibration models were constructed using
PLS1 (29) regression, and both a cross-validation and test set validation
were adopted to validate them. In the first case, the internal validation
was carried out by means of a leave-one-out procedure, with as many
validation subset as the number of samples included in the calibration.
The test set validation was carried out instead by selecting 33% of the
total samples as a test set from the score plot derived from PCA
(component 2 vs component 1), to select a test set representative of all
samples. Cross-validation could be too optimistic, because excluding
one sample has a lower perturbative effect on the model, whereas test
set validation could give a more realistic estimation of the predictivity
of the model, the main drawback being the reduction of the number of
samples considered. In both cases, the predictivity of the calibrations
was quantitatively evaluated as root mean square error, in cross-
validation (RMSECV), and in test set validation root mean square error
of prediction (RMSEP), as described in eq 1, where M is the number
of the samples, which coincides with the total number of samples in
cross-validation and with the number of the test set samples in test set
validation:

RMSECV or RMSEP)� 1
M∑

i)1

M

(Xi-true -Xi-predicted)
2

(1)

Another relevant parameter taken into account for the calibrations
is the bias. Bias is a quantification of the systematic error of the model.
To evaluate the capability of a PLS method necessary to evaluate the
two parameters together, RMSEP and bias, the most capable PLS
method is the one with the lowest RMSEP and bias value as close as
possible to zero. PLS regression gives the dimensionality of the model
as an output, that is, the number of factors (rank). Outliers, that is,
samples with high error and high leverage, were excluded from the
calibration data set. Preprocessing and spectral range were selected for
every calibration as a function of the predictivity of the resulting cross-
validated models, corresponding to the lower values of RMSECV.
Moreover, the spectral regions were selected by taking also into account
the NIR position of the absorption bands corresponding to the functional
groups, which are characteristic for each calibration, that is, H2O for
the moisture content of both malt and maize, RNH2 for the total nitrogen
content, both as is and dry matter, of malt, and CdO stretching for the
total lipids of maize. All operations involving the calibrations (spectral
data treatments, construction of PLS regression models, and control of
the dependability of the models by RMSECV and RMSEP) were carried
out by means of the Quant 2 function, included as part of the OPUS
software (versions 5.5 and 6.5).

Reference Analyses. The standard methods from the Analytica
European Brewery Convention (A-EBC) were adopted as reference
analyses for moisture content in pale and Munich malts (oven-based)
(30); moisture content in colored malts (oven-based) (31); total nitrogen
in all malts (Kjeldhal) (32); moisture content in maize (oven-based)
(33); and total lipids in maize (Soxhlet extraction) (34).

Validation: Repeatability, Comparison with the Standard Meth-
ods, and Uncertainty Determination. Each calibration curve was
tested by recording 11 independent spectra under repeatability condi-
tions and evaluating the predicted values. In particular, malt calibrations
were tested with three different types of malt, that is, pale, Munich,
and colored, whereas maize calibrations were tested with two different
maize samples. To do this, samples were finely ground (0.2 mm) and
divided in two portions, one for spectra recording and the other for
standard analyses. The normality test of the distributions on each data
set was performed by means of the Shapiro-Wilk test (35, 36) with a
probability level of p ) 95% (R ) 5%). Moreover, anomalous data
were identified by means of the Huber test, which is based on the

Table 3. Results of NIR Calibrations for Malt (Moisture Content and Total
Nitrogen) and Maize (Moisture Content and Total Lipids) by Means of Test
Set Validation

no. matrix parameter R2 RMSEP,
% m/m

bias,
% m/m

rank

1 malt moisture content 98.30 0.100 0.0080 10
2 malt total nitrogen, as is 85.41 0.042 0.0051 6
3 malt total nitrogen, dry matter 90.34 0.029 0.0082 11
4 maize moisture content 97.68 0.080 -0.0151 9
5 maize total lipids, as is 90.75 0.044 -0.00355 6
6 maize total lipids, dry matter 88.19 0.055 -0.0112 5
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evaluation of the median and is one of the most robust methods (36).
If both conditions are satisfied, that is, the distribution is normal and
there are no anomalous data, the statistical parameters, such as the
average value, the standard deviation (sr), and the repeatability (95%
confidence, r95), can be calculated, and a comparison with the
repeatability of the standardized methods adopted as primary methods
can be carried out.

The average values from each data set were compared with those
from standard methods to verify the predictivity of the calibrations.
The repeatability of the NIR methods was compared with those of the

standard methods through the sr/σr ratio, σr being the standard deviations
calculated from the collaborative trial determined repeatabilities of the
standard A-EBC methods, according to eq 2:

σr )
r95

t × √2
(2)

As the number of the repetitions is not detailed in the A-EBC
methods, a precautionary value of 2 was considered for t in calculating
σr. The repeatabilities of the NIR methods were considered to be

Figure 3. Predicted versus true values for malt calibrations, carried out by means of test set validation: (a) moisture content; (b) total nitrogen, as is;
(c) total nitrogen, dry matter.

Figure 4. Predicted versus true values for maize calibrations, carried out by means of test set validation: (a) moisture content; (b) total lipids, as is; (c)
total lipids, dry matter.
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comparable to those of the A-EBC methods if the value of the ratio is
between a lower (A) and an upper (B) limit, that is, if eq 3 is satisfied:

Ae
sr

σr
eB (3)

A and B were obtained from Student’s test, for ν ) (n - 1) degrees of
freedom and p ) 0.95. When this condition was satisfied, method
uncertainties calculated according to the holistic approach allow using
the extended uncertainty (Ue) of the reference method, for methods
with comparable repeatability. Extended uncertainties were calculated
according to eq 4, where k is a coverage factor, conventionally 2:

Ue ) kUc (4)

Uc is the compose uncertainty, calculated, according to eq 5, from the
reproducibility of the standard A-EBC methods with a 95% confidence
(R95):

Uc )
R95

t × √2
(5)

Also in this case, t values were considered to be 2.

RESULTS AND DISCUSSION

The NIR calibrations for moisture and total nitrogen content
in malt, as well as those for moisture and total lipids contents
in maize, were carried out by means of PLS regressions between
the spectra of the sample sets and the reference data, with respect

to the spectral regions and adopting the spectra preprocessing
modes detailed in Table 1. These are the selected optimal
conditions for each calibration and were adopted for both
internal (cross-validation, leave-one-out) and external (test set)
validations. Moreover, spectral regions were selected by taking
into account the absorption bands characteristic of the analyzed
parameters. The region between 9970.4 and 4246.6 cm-1 was
chosen, for instance, for moisture content of malt, as H2O
absorption bands are in this spectral region.

Table 2 shows the results for the cross-validations, carried
out by means of the leave-one-out procedure, and the graphs in
Figures 1 and 2 represent the predicted as a function of the
true values, that is, the experimental ones, for malt and maize,
respectively. All calibrations can be considered to be satisfac-
tory, considering the low values of the RMSECV parameters.
Moisture contents for malt are indeed in the 1-7% m/m range,
whereas total nitrogen contents are in the range of 1.3-2% m/m,
and in both cases RMSECV values are at least 1 order of
magnitude lower. The same can be observed for maize calibra-
tions, as moisture contents for malt are in the 12.3-15% m/m
range, and total lipid contents are in the range of 0.5-1.3%
m/m.

The bias values, which are the average values of the
differences between the values calculated by the model and the
those experimentally determined, are lower than 0.01% m/m
in all cases, which is at least 2 orders of magnitude smaller

Table 4. Comparisons between NIR Malt Calibrations and A-EBC Standard Methods and Uncertainties of NIR Methods for Malta

sample parameter validation av true diffb r95 sr σr sr/σr R95 Ue

pale moisture content internal 4.96 4.92 0.04 (0.8%) 0.060 0.019 0.046c low 0.6c 0.4
test set 4.97 4.92 0.05 (1.0%) 0.061 0.019 0.046c low 0.6c 0.4

pale total nitrogen, as is internald 1.67 1.63 0.04 (2.5%) 0.044 0.014
test set 1.64 1.63 0.01 (0.6%) 0.052 0.016

pale total nitrogen, dm internal 1.72 1.72 0.00 0.036 0.011 0.018e satisfactory 0.13e 0.09
test set 1.72 1.72 0.00 0.049 0.016 0.018e satisfactory 0.13e 0.09

Munich moisture contentf internal 2.73 2.54 0.19 (7.5%) 0.083 0.026 0.046c low 0.6c 0.4
test set 2.83 2.54 0.29 (11.4%) 0.102 0.032 0.046c satisfactory 0.6c 0.4

Munich total nitrogen, as is internal 1.48 1.49 -0.01 (-0.7%) 0.022 0.007
test set 1.45 1.49 -0.04 (-2.7%) 0.028 0.009

Munich total nitrogen, dmf internald 1.50 1.52 -0.02 (-1.3%) 0.040 0.013 0.018e satisfactory 0.13e 0.09
test set 1.49 1.52 -0.03 (-2.0%) 0.049 0.016 0.018e satisfactory 0.13e 0.09

colored moisture contentf internal 2.01 2.07 -0.06 (-2.9%) 0.158 0.050 0.025g high 0.32g

test set 1.92 2.07 -0.15 (-7.2%) 0.129 0.041 0.025g high 0.32g

colored total nitrogen, as is internal 1.85 1.79 0.06 (3.4%) 0.055 0.018
test setd 1.79 1.79 0.00 0.025 0.008

colored total nitrogen, dm internald 1.83 1.82 0.01 (0.5%) 0.034 0.011 0.018e satisfactory 0.13e 0.09
test seth 1.91 1.82 0.09 (4.9%) 0.020 0.006 0.018e low 0.13e 0.09

a Percent m/m. b Diff ) av - true, values in parentheses are percentages relative to measured values. c Reference 28. d n ) 10. e Reference 31. f True value outside
the validation range of the A-EBC method, in the same order of magnitude. g Reference 30. h n ) 9.

Table 5. Comparisons between NIR Maize Calibrations and A-EBC Standard Methods and Uncertainties of NIR Methods for Maizea

sample parameter validation av true diffb r95 sr σr sr/ σr R95 Ue

maize 1 moisture internalc 13.57 13.91 -0.34 (-2.4%) 0.137 0.043 0.046d satisfactory 0.60d 0.4
test setc 13.65 13.91 -0.26 (-1.9%) 0.124 0.039 0.046d satisfactory 0.60d 0.4

maize 1 total lipids, as ise internalc 1.02 0.99 0.03 (3.0%) 0.113 0.035 0.028f satisfactory 0.23f 0.2
test setc 1.01 0.99 0.02 (2.0%) 0.097 0.030 0.028f satisfactory 0.23f 0.2

maize 1 total lipids, dm internal 1.20 1.15 0.05 (4.3%) 0.208 0.066
test setb 1.17 1.15 0.02 (1.7%) 0.116 0.036

maize 2 moisture internal 12.66 13.04 -0.38 (-2.9%) 0.160 0.051 0.046d satisfactory 0.60d 0.4
test set 12.66 13.04 -0.38 (-2.9%) 0.094 0.030 0.046d satisfactory 0.60d 0.4

maize 2 total lipids, as ise internalc 1.00 1.02 -0.02 (-2.0%) 0.121 0.038 0.029f satisfactory 0.23f 0.2
test setg 0.99 1.02 -0.03 (-2.9%) 0.076 0.023 0.029f satisfactory 0.23f 0.2

maize 2 total lipids, dm internal 1.22 1.17 0.05 (4.3%) 0.130 0.041
test set 1.16 1.17 -0.01 (-0.9%) 0.165 0.052

a Percent m/m. b Diff ) av - true, values in parentheses are percentages relative to measured values. c n ) 10. d Reference 32. e True value outside the validation
range of the A-EBC method, in the same order of magnitude. f Reference 33. g n ) 9.
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than the measured values. This means that no major systematic
errors are present in the calibration results.

Validations were carried out by means of test set validation,
as well. Leave-one-out cross-validation could be indeed too
optimistic to estimate the predictivity, in terms of RMSECV,
of the models. The calibrations were hence validated by means
of an external validation, treating part of the complete sample
set as a test set (33%). Such samples were chosen by operating
a PCA on the complete sample set, equally dispersed on the
score plot built by taking into account the first two components,
to select a test set representative of all samples. Test set
validation is hence carried out on a lower number of samples,
but is supposed to be more realistic in evaluating the predictivity
of the models. Table 3 shows the results for the test set
validations, and the graphs in Figures 3 and 4 represent the
predicted as a function of the true values, that is, the experi-
mental ones, for malt and maize, respectively. In this case, the
rank values are lower than those reported in Table 2, as the
number of samples in the training set was decreased and cross-
validation methods tipically overfit more than external validation
ones. RMSEP values are a little bit higher than RMSECV ones,
as expected, but remain lower than the values of the parameters.
Hence, the test set validations confirm that the models are
satisfactory to predict the values of the considered parameters
for malt and maize.

Both internally and externally validated models were tested
for their repeatability, considering more than one validation
sample for each calibration. In particular, the calibrations for
malt were tested by means of three different malts: a pale, a
Munich, and a colored malt, representing the three main classes
of malt adopted to build the calibrations. Two different maize
samples, owing to the two main types of maize adopted to build
the calibrations, were used to test the repeatability of maize
calibrations. For each sample, 11 independent spectra were
recorded under repeatability conditions, that is, in the same
laboratory, by means of the same instrument and operator, in a
short time interval, on finely ground samples, and used to
calculate the values of moisture content, total nitrogen (both as
is and dry matter), and total lipids (both as is and dry matter).
At the same time, the same values were determined on the same
samples by means of the reference methods, that is, the A-EBC.
A comparison between NIR and experimentally determined
(true) values was carried out to test the predictivity of the
calibrations and to verify if it depends on the kind of malt.
Multiple measurements were used to calculate the repeatability
of the NIR methods with a 95% confidence level (r95) and to
compare it with those of the standardized methods, as described
under Materials and Methods. As the malt calibrations were
built with different kinds of malt, three different kinds of malt
were considered to test them: pale, Munich, and colored. Two
different maizes were used instead to test the maize calibrations.
All data sets satisfied the Shapiro-Wilk normality test, and
validation parameters are listed in Tables 4 and 5 for malt and
maize, respectively.

Data relative to malt calibrations are discussed first. No
relevant difference was observed between cross-validated and
test set validated calibrations. The average values measured by
means of NIR calibrations seem to be closer to the true ones
for pale rather than for Munich and colored malts. This result
was expected, as most of the training set samples are pale malts.
The moisture content values for both Munich and colored malt
lay outside the ranges considered in the validation of the A-EBC
reference methods, which are 3.8-7.3% m/m (30) for Munich
malts and 4.1-7.7% m/m (31) for colored malts. The same was

observed for the total nitrogen content, dry matter, of the Munich
malt, for which the validation range is 1.56-1.87% m/m (32).
The repeatability of the standard A-EBC methods was compared
with those of the NIR calibrations in all cases, because the values
laying outside are in the same order of magnitude of the
validation ranges. Repeatability was compared only for those
parameters validated by the EBC, that is, moisture content and
total nitrogen, dry matter, as no validation parameter for total
nitrogen, as is, is reported in the standard A-EBC methods. The
comparison was not satisfactory only for moisture content of
colored malt, the sr/σr ratio being higher than the upper
acceptability limit. When this ratio was instead lower than the
inferior acceptability limit, the repeatability of the two methods
was considered to be comparable, as the NIR method is
supposed to be characterized by fewer experimental variables
than the oven-based one. This means that, apart from the NIR
method for moisture content determination on colored malt, all
calibrations match the repeatability of the standard methods for
pale, Munich, and colored malts. Under these conditions, the
reproducibility of the standard method can be considered
applicable to the NIR method, and their extended uncertainties
(Ue) can be calculated according to the holistic method for
uncertainty determination, as described in eqs 4 and 5 (Materials
and Methods). When extended uncertainty was calculated, all
differences between NIR-determined and true values were lower
than the uncertainty of the NIR method, the determination of
total nitrogen, dry matter, being at the limit.

Data for the maize sample are shown in Table 5. Also in
this case, no major difference was observed between cross-
validated and test set validated models. For both samples, there
was good agreement between NIR-determined and true mea-
sured values, for both internal and test set validated calibrations.
Moreover, the repeatabilities of NIR methods match those of
the standard A-EBC methods, for both moisture content and
total lipids, as is (total lipids, dry matter, was not validated by
the A-EBC collaborative trials), and extended uncertainties were
calculated from the reproducibilities of the standard A-EBC
methods. All differences between NIR-determined and true
values were smaller than the uncertainties of NIR methods.

Hence, the NIR technique can be used to predict the quality
of brewing raw materials in a rapid, reliable, and nondestructive
way. Due to optimized calibrations, it can be indeed much more
advantageous than other analytical techniques, as NIR measure-
ments are very fast and no sample preparation or use of
hazardous solvents is required. The results obtained in this work
point out the precision of the method for cereals such as malt
and maize, to keep under control their moisture, nitrogen, and
lipid contents. The calibrations were obtained by considering
more than 250 malt samples and 100 maize samples. The
optimization of the models gave calibrations characterized by
very low values of the RMSEP parameter.

In the end, we gave a positive answer to requests from large,
medium, and small brewing industries asking for a rapid and
highly repetitive analytical method comparable to the official
ones to control malt moisture and nitrogen as well as maize
moisture and lipid contents.
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